
PARALLEL AND SERIAL GARBAGE COLLECTOR IN MULTITHREADED
APPLICATIONS: A QUANTITATIVE ANALYSIS

Shubhnandan S. Jamwal1 & Devanand2

The performance of garbage collector is largely dependent upon application execution behavior. We have taken the
multithreaded applications for study in this paper. The execution of the threads is done in small stack sizes of 4mb, 8mb and
16mb. We observed the behavior of two collectors with respect to the number of pauses and application execution time in
the multithreaded application. It is observed that the number of pauses in case of serial garbage collector remains more as
compared to parallel garbage collector. If we look at the average of all the three multithreaded applications in case of 4mb
stack the average number of pause are 9.5 and 1.8 for serial garbage collector and parallel garbage collector respectively. For
16mb stack the average number of pause are 4 and 1.9 for serial garbage collector and parallel garbage collector respectively.
In paper we further observed that the average time of execution of all three applications in 4mb of stack with serial garbage
collector is 366.73ms and with the parallel collector the average is 95.86ms and the average of all the application in 16mb of
stack with serial garbage collector is 201.66ms and with the parallel collector the average time is 103.2ms.

Keywords: Garbage Collector, Serial, Parallel, Stack, Multithreaded, Virtual

INTRODUCTION

Garbage collection plays an increasingly important role in
next generation Internet computing and server software
technologies. However, the performance of collection
systems is largely dependent upon application execution
behavior and resource availability. When an object is no
longer referenced by the program the heap space it occupies
must be recycled so that the space is available for subsequent
new objects. The Garbage collector must some how
determine which objects are no longer referenced by the
program and make available the heap space occupied by
such unreferenced objects. In addition to freeing
unreferenced objects, the garbage collector must also
combat heap fragmentation. Heap fragmentation occurs
through a course of normal program execution. New objects
are allocated and unreferenced objects are freed such that
the free blocks of the heap memory are left in between
blocks occupied by live objects. Request to allocate new
objects may have to be filled by extending the size of the
heap even though there is enough unused space available
in the existing heap.

One of the advantages of garbage collection is that the
garbage collection ensures program integrity. Garbage
collection is an important part of Java’s security strategy.
Java programmers are unable to accidentally crash the
finalize and free unreferenced objects on the fly, but the

1Asst. Professor, email: jamwalsnj@gmail.com
2Professor and Head, email: dpadha@rediffmail.com

PG Department of Computer Science and IT, University of Jammu

programmers in the garbage collected environment have less
control over the scheduling of the CPU time devoted to
freeing objects that are no longer needed.

LITERATURE REVIEW

Kim et al.[1] analyze the memory system behavior of several
Java programs from the SPECJVM98 benchmark suite. One
of the observations made in their work is that the default
heap configuration used in IBM JDK 1.1.6 results in frequent
garbage collection and the inefficient execution of
applications. Although the direct overheads due to garbage
collection in their environment appear to be more costly than
in ours (both because the entire heap is swept on each
collection and heap compaction is used), we believe that their
results also demonstrate the need to improve techniques for
controlling garbage collection and heap growth.

Dimpsey et al.[2] describe the IBM DK version 1.1.7
for Windows. This is derived from a Sun reference JVM
implementation, and changes were made in order to improve
the performance of applications executing in server
environments. Their approach also considers the amount of
physical memory in the system. They set the default initial
and maximum heap size to values that are proportional to
the amount of physical memory in the system. However, they
do not explain what values are used or how they were chosen.
They also make modifications to reduce the number of heap
growths because they are quite costly in their environment.
If the amount of space available after a garbage collection is
less than 25% of physical memory or if the ratio of time
spent collecting garbage to time spent executing the

International Journal of Information Technology and Knowledge Management
July-December 2010, Volume 2, No. 2, pp. 487-490

mailto:jamwalsnj@gmail.com
mailto:dpadha@rediffmail.com

488 SHUBHNANDAN S. JAMWAL & DEVANAND

application exceeds 13%, the heap is grown by 17%. They
report that ratio-based heap growth was disabled if the heap
approached 75% of the size of physical memory, but they
do not explain what was done in this case. They report that
when starting with an initial heap size of 2 MB, this approach
increases throughput by 28% on the VolanoMark and pBOB
benchmarks.

Other related work shows empirically that performance
enabled by garbage collection is application-dependent. For
example, Fitzgerald and Tarditi [3] performed a detailed
study comparing the relative performance of applications
using several variants of generational and non-generational
copying collectors (the variations had to do with the write
barrier implementations). They showed that over a collection
of 20 benchmarks, each collector variant sometimes
provided the best performance. On the basis of these
measurements they argued for pro-file-directed selection of
GCs. However, they did not consider variations in input,
required different pre-built binaries for each collector, and
only examined semi-space copying collectors. They further
observed that no single collection system enables the best
performance for all applications and all heap sizes and the
difference in performance can be significant.

Ungar and Jackson [4, 5] conduct simulation studies
to examine the impact that tenuring decisions have on the
pause times in a generation-based scavenging garbage
collector. They first show that when using a fixed-age
tenuring policy, low-tenure thresholds (based on the amount
of time an object has survived) produce the most tenured
garbage and the shortest pause times. The authors then
introduce feedback-mediated tenuring in which future
tenuring decisions are based upon the amount of surviving
data in the youngest generation. Their work is able to reduce
pause times in their simulated environment, which can
provide significant benefits in an interactive environment.
However, they do not consider the cost of later collecting
the increased amount of memory that has been tenured, nor
the impact of page faults.

Moon [6] points out that user of some early Lisp
machines found that garbage collection made interactive
response time so poor that they preferred to turn garbage
collection off and reboot once the virtual address space was
consumed. He also demonstrates that some applications
execute fastest with garbage collection turned off.

Cooper et al. [7] show how the performance of Standard
ML can be improved by applying optimizations to a simple
generational collector introduced by Appel [8]. In addition
to utilizing Mach’s support for sparse address spaces and
external pagers, they propose and study a modification to
Appel’s algorithm for deciding how to grow the heap. For
each of the three applications studied, they use a brute force
approach to determine optimal values (i.e., those that
produce the fastest execution time) for the two parameters

used by Appel’s algorithm and the three used by their own.
By modifying the algorithm for growing the heap, they are
able to significantly reduce the number of page faults and
the execution time of two of the three applications studied
(the performance of the third was not changed significantly).
Although this aspect was not the focus of their study, it is
interesting to see that the set of optimal parameters is
different for each application and that it varies with the other
approaches used to reduce paging.

Zorn [9,10] points out that the efficiency of conservative
garbage collection can be improved if more garbage can be
collected during each collection phase, and suggests that
one way to achieve this is to wait longer between collections.
However, he also warns that there is a trade-off between the
efficiency of collection and program address space. In
addition, he describes a policy for scheduling garbage
collection that is based on an “allocation threshold.” This
means that the collector runs only after a fixed amount of
memory has been allocated (e.g., after every 2 MB).

ENVIRONMENT AND BENCHMARKS

We measured the performance three multithreaded
benchmarks of bubble sort (BuS), selection sort (SelS) and
quick sort (QkS) on a random numbers of arraylets of size
of 50000 numbers. Different arraylets of same size are
created and then sorted by using iterative sorting algorithms.
The user defined functions for bubble sort, selection sort
and quick sort are called for five, ten, fifteen, twenty and
twenty five threads. The different threads are allowed to
finish before the static method main. Synchronized behavior
of the different threads is created by calling appropriate
synchronized blocks to allow the completion of the user
created threads before the system threads so that the minor
changes in the behavior of the different garbage collectors
on multithreads can be noted. The results in tables depict
the average of five runs for each entry. The execution of the
threads is done in small stack sizes of 4mb, 8mb and 16mb.
The minimum stack size was kept as 4mb, 8mb and 16mb
where as the maximum size of the stack for all the
application was set as 32mb.

The hardware used for conducting the tests was Intel
core(R) Core(TM) 2 CPU T5600, 1.83 GHz, L1 cache of
64KB, L2 cache of 2048KB and 512 MB RAM. Microsoft
Windows XP Professional Version 2002 Service pack 2 was
used as an operating system. Java version “1.5.0” Java(TM)
2 Runtime Environment, Standard Edition (build 1.5.0-b64),
Java HotSpot(TM) Client VM (build 1.5.0-b64, mixed
mode) was used as software environment.

ANALYSIS OF NUMBER OF PAUSES

It is observed that the numbers of pauses in case of serial
garbage collector are much ore as compared to parallel
garbage collector in 4mb of stack but as the stack size grows

PARALLEL AND SERIAL GARBAGE COLLECTOR IN MULTITHREADED APPLICATIONS: A QUANTITATIVE ANALYSIS 489

from 4mb to 16mb the number of pauses in case of serial
garbage collector are reduced to some extent but they are
still unavoidable as compared to the parallel garbage
collector. When the average number of pause in all the
number of application are measured in 4mb stack it is
observed that in case of BuS the average number of pauses
for serial garbage collector is 7.2 and for parallel garbage
collector is 1.2. For the application of SelS the average
number of pauses for serial garbage collector is again 7.2
and for parallel garbage collector is 1.4. In the application
of QkS the average number of pauses for serial garbage
collector is again 14.2 and for parallel garbage collector are
3. If is recommended that for systems with small memory
such as video games, embedded systems stop the world
collector is not suitable over the parallel garbage collector.
When the size of the stack is increased from 4mb to 16mb
the average number of pauses in case of BuS and SelS for
serial garbage collector are 3 and for parallel garbage
collector the average number of pause are 1.4 but in QkS
the number of pause for serial garbage collector are 6 and
for parallel garbage collector the average number of pause
are 3. The number of pauses in case of serial garbage
collector remains more as compared to parallel garbage
collector in all the applications. If we look at the average of
all the three multithreaded applications in case of 4mb stack
the average number of pause are 9.5 and 1.8 for serial
garbage collector and parallel garbage collector respectively.
For 16mb stack the average number of pause are 4 and 1.9
for serial garbage collector and parallel garbage collector
respectively.

Table1
Average Number of Pauses of Three Different Stack Sizes

of all Three Application

ANALYSIS OF EXECUTION TIME OF THE APPLICATION

We have also measured the garbage collector times in three
multithreaded applications. It is observed that executing the
application with serial garbage collector is much more
expensive than the executing the same application with the
parallel garbage collector. We have observed that in 4mb of
stack the average time of the execution of BuS application
is 191.6ms while executing the same application in same
stack size with the parallel collector costs only 82.2ms. For
the SelS application the average time of the execution is
196.4ms where as executing the same application with the
parallel collector costs only 99.4ms. QkS application takes
622.2ms and 106ms with the serial and parallel garbage
collector respectively. In a stack of 16mb the average time
of the execution of BuS application is 131.6ms while

executing the same application with the parallel collector
costs only 104ms. For the SelS application the average time
of the execution is 152ms where as executing the same
application with the parallel collector costs only 84ms. QkS
application takes 321ms and 121ms with the serial and
parallel garbage collector. The average time of execution of
all three applications in 4mb of stack with serial garbage
collector is 366.73ms and with the parallel collector the
average is 95.86ms and the average of all the application in
16mb of stack with serial garbage collector is 201.66ms and
with the parallel collector the average time is 103.2ms.

Table 2
Average Execution Time of Garbage Collector in

Three Different Stack Sizes for all Three Applications

CONCLUSION

The parallel garbage collector is the choice for most
multithreaded applications over the serial garbage collector.
Garbage collection plays an increasingly important role in
next generation Internet computing and server software
technologies. However, the performance of garbage
collection systems is largely dependent upon application
execution behavior and resource availability particularly the
stack size. Garbage collection can occur in a number of
situations. For example, when the amount of memory
remaining in available memory falls below some pre-defined
level, garbage collection is performed to regain whatever
memory is recoverable. Also, a program or function can
force garbage collection by calling the garbage collector.
Finally, the garbage collector may run as a background task
that searches for objects to be reclaimed. The overhead
introduced by selection of the wrong GC can be significant.
In this work, we implement and evaluate the performance
of serial garbage collector and parallel garbage collector in
small footprints for multithreaded environments. It is
concluded that the use of the serial GC is not recommended
over the parallel GC in memory starved applications.

REFERENCES

[1] KIM, T., CHANG, N., AND SHIN, H. 2000. “Bounding
Worst Case Garbage Collection Time for Embedded Real-
time Systems”. In Proceedings of the IEEE Real Time
Technology and Applications Symposium (RTAS).

[2] DIMPSEY, R., ARORA, R., AND KUIPER, K. 2000. “Java
Server Performance: A Case Study of Building Efficient”,
Scalable JVMs. IBM Syst.

[3] Fitzgerald, R., Tarditi, D., 2000. “The Case for Profile-
directed Election of Garbage Collectors. In: ACM

490 SHUBHNANDAN S. JAMWAL & DEVANAND

SIGPLAN International Symposium on Memory
Management (ISMM).

[4] UNGAR, D. M. AND JACKSON, F. 1988. “Tenuring
Policies for Generation-based Storage Reclamation”. ACM
SIGPLAN Notices.

[5] UNGAR, D. M. AND JACKSON, F. 1992. “An Adaptive
Tenuring Policy for Generation Scavengers”. ACM Trans.
Program. Lang. Syst.

[6] MOON, D. A. 1984. “Garbage Collection in a Large LISP
System”. In Conference Record of the ACM Symposium
on Lisp and Functional Programming (Austin, TX), G. L.
Steele, Ed. ACM Press.

[7] APPEL, A. W. 1989. “Simple Generational Garbage
Collection and Fast Allocation”. Soft, Pract. Exper.

[8] COOPER, E., NETTLES, S., AND SUBRAMANIAN, I.
1992. “Improving the Performance of SML Garbage
Collection using Application-specific Virtual Memory
Management”. In ConferenceRecord of the ACM
Symposium on Lisp and Functional Programming (San
Fransisco, CA). ACM.

[9] ZORN, B. 1990. “Comparing Mark-and-sweep and Stop-
and-copy Garbage Collection”. In Conference Record of
the ACM Symposium on Lisp and Functional Programming
(Nice, France). ACM Press.

[10] ZORN, B. 1993. “The Measured Cost of Conservative
Garbage Collection”. Softw. Pract. Exper.

